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Introduction 
On January 10, 2020, the World Health Organisation 
(WHO) recognised and designated COVID-19 in response 
to an earlier virus-borne infection outbreak that 
occurred in Wuhan, China in December 2019. Due to 
thousands of confirmed illnesses and thousands of 
deaths worldwide, the COVID-19 pandemic is regarded 
as the greatest threat to the international community 
[1]. As a result, it was deemed a Public Health 
Emergency of International Concern by the WHO [2]. In 
[3, 4], a few SIR models have been put forth and 
examined. 

An epidemiological compartmental model, which 
includes hospitalised classes and deaths, was developed 
in [1] and accounts for the super-spreading 
phenomenon of certain individuals. Their model's 
sensitivity analysis reveals that the variables most 
sensitive to the fundamental reproduction number are 
the human infection rate, 

• Model formulation 
The goal of the model is to explain how the disease 
develops over the course of an infection once an index 
case is introduced into a community that is fully 
susceptible. We adopt the same assumptions as other 
models of infectious diseases, taking into account the 
kinetics of the disease as well as the processes of birth 
and natural death. We use the mass action principle with 

a corrective term describing the logistic population 
growth rate if the disease didn't exist. The entire human 
population, denoted as N (t), is split up into five classes: 
the infectious symptomatic class S(t), the infectious 
asymptomatic class A(t), the non-infectious Recovered 
class R(t), and the non-infectious susceptible class C(t). 
This means that N = C + L + S + A + R.(2.1) 
The variables of the State 

Table 1. List of model variables 
 

Variable of stateSynopsis NThe total population of 
humans, C the susceptible population, L the exposed, 
non-infected population, and S the symptomatic, 
infectious population Human population, asymptomatic, 
infectious R; recovered, non-infectious Vquantity of 
viruses present on surfaces 

 

 
Fig. 1. Pathway diagram of the COVID-19 
model showing (a) the progression (solid) 
and transmission (dashed) of the disease 
between compartments; the variable names 
are listed in Table 1. The connecting arrows 
are labelled with the associated rate 

constants, where the natural death of each of the 
classes are not shown for clarity 

 

 
Susceptible humans get infected by contacting infectious humans and viruses from surfaces at rates 

 
β1  S C, β2 A C and β3V C, where β1, β2 and β3 are rate constants. The fractions  S and A 

  
are 

 
N N N N 

the likelihoods that the contacts are with persons who 
exhibit symptoms or not. It should be noted that class L 
persons are not infectious; rather, they are in the 
exposed stage of infection. In the absence of the 
disease, θ3N 2, which represents the per capita resource 
availability for the human population, prevents the 
population from growing infinitely and attracts 
susceptible persons into the population through a steady 

birth rate, λ1. After a mean latency period of η1, a 
fraction of incubating persons become asymptomatic, 
and after that, they become infectious. This presumption 
differs from that of [5], wherein the authors proposed 
two incubation periods, despite intending only one. 
Every human class "dies naturally" at a rate of µ1 per 
capita, yet certain people 

dC =  λ N − (β 
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S + β A + β V + µ )C − θ N 2, (2.2) 

 

dt 
1 

  
1 

N 2 N 3 1 3 
 

Table 2. Model parameters and their dimensions. Values marked with bullet (•) are assumed values in other 
mathematical models and those marked with asterisk (∗) are obtained from experimental sources 

g0 = y1y2y3y8, g1 = ah2 + bh3 + θh4, g2 = ah5 + θh6, g3 = ah7 + bh8 + θh9, g4 = θh10, 

h1 =  y2y3y8, h2 = y3y6y8 + ωy7y8, h3 = y2y7y8, h4 = y3y4y6 + y2y5y7 + ωy4y7, (3.4) 

h5 =  y1y3y8, h6 = y1y3y4, h7 = ωy1y8, h8 = y1y2y8, h9 = y1y2y5 + ωy1y4, h10 = y1y2y3. 

The characteristic equation of (3.3) in terms of the eigenvalue, λ⋆, shows that three of the eigenvalues vanish 
leaving the expression 

= 
g1  , (3.5) 

B4 
 

 
which expressed in terms of the model parameters gives 

R = γ (agh (mω + r2(µ + ω + q)) + r1(aη + dq)(mω + r2) + m(µ + 1) (bgh + r1(bη + eθ))) . 
(µ + 1)(µ + γ)(µ + ω + q) (gh + ηr1) 

(3.6) 
where r1 = (λ − µ) > 0 and r2 = (1 − m) > 0. This follows from section2.1, where we have assumed that natural birth 
rate is greater than natutal death rate and m ∈ (0, 1). The condition m = 1, signifies all cases are asymptomatic 
while m = 0, is a situation where all infectious humans are sick. 

 

• Positivity, existence and uniqeness of solution 

The model is described in the domain 

Γ ∈ R7 =  {C, L, S, A, R, V, N : C ≥ 0, L ≥ 0, S ≥ 0, A ≥ 0, R ≥ 0, V ≥ 0, 

N >  0, C + L + S + A + R = 1}, (3.7) 

Suppose at t = 0 all variables are non-negative, then C(0) + L(0) + S(0) + A(0) + R(0) = 1 and 

V (0) = 0. If L = 0, and all other variables are in Γ, then 
dL ≥ 0. This is also the case for all other 

dt 

variables in (2.14)−(2.17). But if C = 0, λ > µ and N < λ−µ , then dC ≥ 0. If N = 0, then 
dN = 0. 

 

h dt dt 
 

But if N > 0 assuming λ > µ i.e. λ 
  

> µ , then with appropriate initial conditions, 
dN > 0 for 

 
 

 

1 1 
dt 

all values of t > 0. We note that the right-hand side of (2.12)−(2.18) is continuous with continuous partial 
derivatives, so solutions exist and are unique. The model is therefore mathematically and biologically well posed 
with solutions in Γ for all t ∈ [0, ∞). 

 

• Steady state solution and stability analysis 

It can be shown from the system that the disease free state is (C, L, S, A, R, V ) = (1, 0, 0, 0, 0, 0, ). In the absence of 
infection, S = 0 and A = 0. Substituting these into the right hand side of (2.17) 
— (2.13) in that order, we obtain V = 0, R = 0 and L = 0. Further substitution of the values of S, A and V into (2.12), 
we obtain C = 1. At the disease free state C = N , meaning all humans are entirely susceptible and we obtain from 
(2.18) the following logistic equation, 
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dN = rN 
(1 − 

N 
) , (3.8) 

where r = λ − µ and K = λ−µ . The solution of (3.8)is given as 

 

 KN0  

N (t) = N + (K − N ) e
−rt 

 (3.9) 

 

and as t −→ ∞, N (t) −→ K = λ−µ , the carying capacity of the environment. The disease free state is locally 

asymptotically stable when R0 < 1 and unstable for R0 > 1. 

We derive sufficient conditions for local stability of the disease free state from all initial conditions 
∈ Γ. The Jacobian matrix obtained by linearising system (2.12)−(2.18) about the disease free equilibrium point, 

(C, L, S, A, R, V, N ) =  1, 0, 0, 0, 0, 0, 
λ − µ is 

h 
 

We note the linear factorisation = (3.11) clearly yields negative real eigenvalues, however, from the quartic equation, 
no such deduction can immediately be made. 

Lemma 3.1. The disease-free equilibrium is locally asymptotically stable if R0 < 1 and unstable if 
R0 > 1. 

Evidence. The quartic polynomial of (3.11) has positive and non-zero coefficients, as observed by the definitions of 
the constants in (3.2) and (3.4). According to Descartes' rule of signs, there are no positive real eigenvalues, which 
means that there are either four negative real eigenvalues, two negative real eigenvalues, one pair of complex 
conjugates with negative real parts, or two pairs of complex conjugate eigenvalues with negative real parts. We 
must demonstrate that the fourth order polynomial Routh Hurwitz stability criteria, as described in [10], can be 
written in our situation in a way that satisfies the requirement. 

ψ = B1B2B3 − (B3
2 

+ B1
2
B4) > 0 (3.13) 

We need to express ψ as a finite sum of positive terms involving the model parameters. Using Maple to undertake 
the tedious algebra, we are able to show that ψ is indeed a sum of positive terms given by 

ψ =  D1(1 − R0)2 + D2(1 − R0) + k1E + k2F + k3G 

+  k4H + k5J + k6L + L0. (3.14) 

The Maple input file used in obtaining the results is not included here due to its size but can be made 
available on request. However, expressions for the constants are stated as follows: 
B7 + y8, C5 = 2B10B13k3y1 + aB10k4y1(B13 + k7 + k10), C5 = y1y2y8, 

B3 y1(B13 + y8 + y2 + k7 + k11), C7 = B3 
[B13C2 + y2(k10y2 + k2)] , 

kk11k12 [B10(k9 + 2k10 + 2k11) + 2C1k7 + k11(C2 + y3)] , B22y8 B9k7y8 + 

2B18(B10 + y3) + 2C1k10y3 + 2k
2 

, 

B18C2(B10y2 + 2C1B18) + B18k11(B10y2 + B18k11), C11 = y3 + 2y8, 
2 2 

 
2 3 

k1 [2k11 + k11B16(y2 + B10) + k12] , 

3 [B9k9 + B22(1 + y2) + 2B24 + B18(2 + C2) + C2y2 + k10y3 + k7] , 

B13B14k
2 

k
2 

, D2 = k11k12(B19B20B21, 
11 12 

2B10k11(B7k5B16k6) + C2k5y2 [B10y1 + C2(2y2 + y3)] , C2k5y2 [C2(B7 + B10) + 

(2C2y2 + C2y3 + k8 + k12)] , 

B10k3k12(B7k9 + 2k9y3 + k12y3) + C1y
2 

+ k1k10(B13 + y
2
), 

2 3 

2B10B16k2k7 + C10 + B10k12 [k9y8(2 + k8 + k11) + 2B18C2y8] , 
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2 3 

B1B10y8 [k9(2 + k8 + k11) + 2B18C2] + C12 + C13, C19 + B18 
[2B18(k7 + 

k10 + y2) + B5y8 + y7] , 

k3 [2B10B24 + B1k10y2 + 2k7y2(B11 + k10)] + C4k2k7y8, 

k4 
[k12(B13 + k10) + y2(k7 + k10) + B11B18 + y8 +10 k7y2 + B18C2y3] , 

k5 
[
B13k12 + k10(k7 + k11) + k10(k10 + B6) + B23y

2 
+ B10B18

] 
+ 2B16B18k6, 

B18y1(4B17B18 + C11k7y8 + B13k9 + k2 + k2 ), 
7 10 

B18 
[
B10k

2 
+ C11k

2 
+ 4B13B18 + 3B11B18 + B18(k7 + 2y

2
) + C2k

2 
+ k5k11y3

] 
, 

k4 3B10B18 + C2(2B10k12 + B10k11 + 3k10y2 + 2y3) , 

k5 [B10(B22 + B24 + 2B26 + k10y2) + C2y2(B5 + C2 + k10) + C11k11y2] , k6 [3B22C2 + B6(B10 + 

y3) + 2C11y3 + C2k10y3(B10 + 2k5)] , 

k3 B10y8 + B17k8y2 + k10(B10C1 + k11 + y2) + k11(B16 + y11) , B18k12 [B7C2y8 + 

y8(B17 + C11y8 + 3y3) + B18] , 

B18y2 
[
3B7B17 + k10y3(1 + C11) + k

2
(1 + y8) + C2k11(C2 + y3)

] 
, 

 

 
k6y3 [2B16k7 + C11k8 + B10(k10 + C2k11] , 

  
3 3 8 

 

k3 B22C4 + B18(B17 + y8) + C2y
3 

+ B10k10y3 + k7(k11) + k12) , B18y1 [B6C11 + 

3B17B18 + k10(k10 + k11)] , 

B18 
[B17k2 + 3B18(B13 + y2) + B18(B11 + y2) + C2k2 ] , 

 

6 

B18 
[
B17k

2 

  
2 

+ 3B18(B14 + y
2
) + B18(C2k

2 

  
3 

+ 2y2)
] , 

k5 B18(B17 + y2) + B16B22 + y3(B6 + B10y2 + k10 + k11) , E1 + E2 + E3 + E4 + E5 

+ E6, F = F1 + F2 + F3 + F4, 

G1 + G2 + G3 + G4 + G5 + G6, H = H1 + H2 + H3 + H4 + H5, J1 + J2 + J3 + J4 + J5, 

B18k11 
[y1(2B13 + k9 + y2) + y2(2B13 + y2 + y2) + C2k11 + C4k6k11y3] , 

 

 
L0 =  C6 + C7 + C8 + C14 + y2(B10 + C1) + k8. 

Assuming that R0 < 1, ψ > 0 since D1, D2, E, F, G, H, J, L, L0, ki, i = 1, 2,..., 6 > 0. R0 < 1 indicates that the disease-free 
equilibrium is thus locally asymptotically stable. The coefficient B1 is positive, and we find that B4 is negative if R0 > 1,  
meaning that the signs of B2 and B3 are not immediately apparent. It is observed that there is a single sign change. If B2 
and B3 are both positive or negative, or if B2 is positive and B3 is negative. Nevertheless, if B2 is negative and B3 is positive, 
there are three sign changes. Therefore, in the worst case, there is just one sign change in the sequence of coefficients, 1, 
B1, B2, B3, and B4. We determine that the disease-free condition is unstable if R0 > 1 by applying Descartes' rule of sign, 
which states that there must be at least one positive real eigenvalue. 
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In the case when R0 = 1, (3.11) has a single zero eigenvalue, indicating that R0 = 1 is a bifurcation surface in the parameter 
space of (β1, β2, β3, γ1, γ2, σ1, σ2, θ1, θ2, λ1, µ1, ω1, m). 

• Numerical solution 
 
 
 

Fig. 2. Results showing the effect of the initial 
infected humans on evolution of infection 
where t = 1, represents approximately 10 days 
in real time. The initial conditions used are C = 
1, L = 0.01, S = 0, A = 0, R = 0, V = 0, N = 1 and 
the 
parameter values are given above 

 
The numerical solution is obtained by using 
MATLAB’s ode15s, a variable order Runge-Kutta 
method with a relative tolerance of 10−8 and 
absolute tolerance of 10−9. The dimensionless 
parameters used for the simulations are defined 
in (2.11) with numerical values; λ = 0.00439, a = 
1.57, b = 1.26, µ = 0.00362, θ = 0.000137, α 
= 0.00463, γ = 0.0485, h = 0.000767, 
ω = 0.000357, d = 0.00403, e = 0.0101, g = 0.101, η 
= 0.000125, q = 0.00865, m = 0.005. Even 
though some of these data are different from the 
original data their adjusted values are 
significantly within the same order of 
magnitudes. At time t = 0 we have the following 
initial conditions in the proportions: C = 0.99, L = 
0.01, S = 0, A = 0, R = 0, V = 0, N = 1. This is a 
situation where 

 

 
the entire susceptible human population is 
exposed to a small fraction of infected humans. 
The program was run in MATLAB with different 
sets of initial conditions, and the qualitative 
form of the steady state solutions were the 
same, although the system gets to a steady state 
faster as initial value of L increases. 

 
Fig. 3. Results showing the effect of the initial 
infected humans on evolution of infection 
where t = 1, represents approximately 10 days 
in real time. The initial conditions used are C = 
1, L = 0.01, S = 0, A = 0, R = 0, V = 0, N = 1 and 
the 
parameter values are given above 

Fig. 6. Results showing the disease free state 
precisely,R0=0.9982 for viruses of 

surfaces, recovered humans and the total 
human population. Parameter values are 
the same as those in Fig. 5 

 

 
In Fig. 3a, the proportion of susceptible human 
population drops and picks, and later drops 
before finally increasing to a steady state This 
behaviour assumes an opposite trajectory in Fig. 
3b,c,d and Fig. 4a,b where the level of infection, 

recovery and viruses on environmental surfaces 
pick and drop and later pick before dropping to 
a steady state. In 4c, the human population 
drops in a fast time scale due to the disease 
related death caused by early invasion of the 

virus. While Fig. 3 and Fig. 4 show prospect of 

the disease being endemic for R0 > 1, Fig. 5 and 
Fig. 6 demonstrate a situation of disease 
eradication when R0 < 1. 

 

Discussion 

Our model explains how the introduction of an index 
case causes COVID-19 to spread throughout a 
completely susceptible human population. The available 
parameter values we employed in our model indicate a 
prospective endemic character of the disease, even if 
precise values for the pandemic have not yet been 
determined. This is corroborated by the value of R0, 
which is 2.1 utilising (3.6) and was previously estimated 
as 2.4829 in [5]. Due to the enormous number of minor 
factors that are inherent in the numerical simulations, 
they display characteristic traits of long term solutions 
that require thorough study utilising different types of 
analysis, including asymptotic. This will highlight the 
important time ranges at which certain events take place 
as the illness progresses. This might be a project for the 
future to learn more about how the illness spreads. 

We observe that the three nondimensional 
parameters—γ, a, and b—are highly significant, with γ 
being the most useful in managing the illness, as may be 
inferred from the fundamental reproduction number. R0 
is consistently increased or decreased with a rise or fall 
in. This is seen in figures 5 and 6, when the disease is 
eradicated with γ. Reducing γ1 and increasing θ1 is an 
effective technique to considerably lower γ, since γ = η1. 
In other words, slowing down the spread of infection 
among diseased people and speeding up the healing 
process for those who are ill. Since those who are 
infected without symptoms are far less likely to spread 
the virus than those who do, raising the value of b to a 
substantial extent will raise R0, while lowering b to zero 
might not have a significant impact [11, 12]. Comparably, 
lim R0 is mostly dependent on other factors, therefore 
lowering a by itself might not have a major effect on 
disease control (a→0). R0 is decreased more quickly with 
a combined downsizing of a and d, though. This implies 
that attempts to lessen contact with viruses on surfaces 
should be coupled with measures to avoid infectiousness 
in persons who have been exposed. 

According to the findings of [1], there is a direct 
correlation between R0 and the rate at which an 
exposed condition becomes infectious. However, as can 
be inferred from the fundamental reproduction number, 
R0, the disease-related death rate is irrelevant in our 
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model. It is erroneous to believe that a rise in disease-
related mortality would lower the basic reproduction 
number, even if [1] suggests that disease-related death 
rates may have a function in disease control. Even while 
such a result would be theoretically tractable, it might 
not have any biological or epidemiological significance 
because disease control does not require a rise in human 
mortality. 

 

Conclusions 
In this study, we present a basic mathematical 
model of the COVID-19 transmission, which 
originated in Wuhan, China, and has had a major 
impact on the majority of small and even large 
economies worldwide. Because an index case is 
introduced, the model concentrates on the 
dynamics of disease transmission in a population 
that is completely susceptible. The findings display 
some long-term damped oscillatory behaviours that 
don't appear to be ending anytime soon. A basic 
reproduction number analysis reveals that a control 
mechanism aimed at managing exposed persons to 
keep them from spreading to susceptible humans 
and surfaces could effectively impede the spread of 
disease.  In addition to the quarantine, testing and 
early diagnosis of infectious cases 

 

 

The usage of masks and social separation are two 
strategies that may help stop the spread of disease. 
Since COVID-19 is still a relatively novel disease, 
there is still much to be done in terms of estimating 
the parameters that govern its behaviour. It is 
necessary to thoroughly examine the numerical 
solutions' innate long-term solutions. 

Owing to the disease's mechanism of transmission 
and unique behavioural patterns brought on by a 
variety of social, cultural, and religious factors, the 
development of a suitable vaccination and effective 
public education about the vaccine's importance are 
the surefire steps to its elimination. Even while we 
wish to recognise the World Health Organization's 
efforts to maintain global health, it may not have 
been as proactive as it could have been. If China had 
been able to limit this COVID-19, the world would 
have suffered significantly less. In the event that an 
epidemic breaks out in any nation, we propose that 
the WHO impose a restriction that permits only 
entry and prohibits all other forms of departure 
from the nation while medical personnel and 
humanitarian aid from other nations are sent in to 
help contain the outbreak. 
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